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The results of anthropogenic activities has been shown 

at global, regional, and local scales, although global 

(Sala et al. 2000). Changes in climate and climate 

natural ecosystems, and may pose additional threats to 

biodiversity has been predicted to cause the extinction 

-
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of 15 – 37% of the Earth’s terrestrial species in the 
next 50 years (Thomas et al., 2004). A similarly dark 
prognosis has been suggested for freshwater species in 
the next few decades (Xenopoulos et al., 2005).
   Freshwater ecosystems are vulnerable to global change. 
Important global climate variables that are expected to 
change in the next decades with respect to freshwater 
habitat are air temperature and precipitation (Mitchell 

temperature, water quantity and water quality variables 
of freshwater environments which are the three primary 
linkages between climate and freshwater organisms 
(Regier and Meisner 1990).
   Climate change pushes species out of their ecological Received 12th April, 2016; Accepted 9th May, 2016.
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not only species distributions or community structure, 
but also the services they provide to ecosystems. 
Understanding how species’ performances change 
along with the environmental gradients is important, 
particularly in aquatic systems, where shifts in habitat 
quality associated with environmental perturbations 
threaten the integrity of aquatic biota (Strayer et al., 
2004).
   The magnitude of impacts from global change 

boreal and tropical areas. In the tropics, the annual air 
temperature variation is smaller, but there is a large 
and predictable annual precipitation variation (Lowe-
McConnell 1987). The seasonal precipitation cycle 

levels, which directly alters the amount of freshwater 
habitat available for biota and indirectly alters many 

turbidity, food availability, etc.).
   The increase in global temperature is predicted to 
cause more vigorous hydrological cycle, with changes 
in precipitation and evapotranspiration rates. Warming 
accelerates land-surface drying as heat goes into 
evaporation of moisture and this increases the potential 
incidence and severity of droughts, which has been 

In tropical systems, evaporation and evapotranspiration 
often already exceed precipitation in the dry season 
(Irion and Junk 1997). In weather systems, convergence 
of increased water vapour leads to more intense 
precipitation and the risk of heavy rain or snow events, 
but may also lead to reductions in duration and/or 
frequency of rain events, considering that the total 

(Trenberth, 2005). In such cases, the tropical areas 

the boreal areas.

remains a lack a comprehensive understanding of the 

outside the normal seasonal changes, on the ecology 
of freshwater biota. The aim of the present article is 
to complement the existing information by reviewing 

particular attention to the hydrological regime and 
resilience of the freshwater biota. 

Key climate-related parameters
Aquatic ecosystems are vulnerable to changes in 
quantity and quality of their water supply, and it is 
expected that climate change will have a pronounced 

and alterations in hydrological regimes with great 
global variability. Aquatic organisms have to adapt 
to a variety of environmental factors simultaneously; 
however, temperature, water quantity and water quality 
are regarded as the most fundamental climate-related 
factors.

represent the strongest seasonal variation, and change 
the environment to an extent comparable to temperature 
in temperate areas (Jacobsen and Encalada 1998). 

is among the most important sources of natural 
disturbances (Taylor et al. 1996). Flow regimes range 

the stability of the substrate are largely determined by the 

becomes the major determinant of the distribution, 
abundance, and diversity of stream and river organisms 

of climatic variability on hydrology can be particularly 
devastating, causing changes in water chemistry, stream 
size, water temperature, streambed structure, streambed 

2001; Starks et al., 2014). Such environmental variation 
can dramatically alter the living conditions and aquatic 

fauna inhabiting streams (Moyle and Vondracek. 1985; 
Taylor and Warren, 2001). 
 

temporary variability. Temporary variability may be 
caused by high precipitation events in the catchment 

structuring communities. This suggests that hydrology 

community structure of biotic communities in rivers, 
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act as disturbances that interrupt the succession in 
plankton communities (Mulyaert et al., 2001). A short 

last for weeks. However, the responses of the plankton 

is dependent of other biotic and abiotic factors. Some 
groups of plankton may respond positively or negatively, 
while some others do not show clear response; e.g. 
Chlorophyll a concentration and abundance of bacteria, 
oligotrich ciliates and crustacean zooplankton did not 

Vyverman, 2006).
   Flood waters transport large amounts of suspended 
solids and nutrients into lakes and/or the sea. An 
increase in concentration of suspended matter in a 
lake leads to greater light attenuation and, thus, to a 
decrease in primary production (Lloyd et al., 1987). 
High concentrations of abiogenic turbidity can limit 
phytoplankton photosynthesis and therefore restrict 

1994). In most cases, an increase in nutrient input will 
cause a rapid increase in algal biomass, especially in 
oligotrophic lakes (Thomas, 1973). However, in several 
lakes, an impoverishment of the algal standing stock 
and a decrease in the phosphorus concentration are 
observed following events involving the discharge of 
suspended sediment into the lake, despite the fact that 

phosphorus into the lake (Sampl, 1986). This is due 

phytoplankters and suspended matter coagulate (Elber 
and Schanz 1990), resulting in a decrease in primary 

responses can also occur under condition of prolonged 

the ratio of mixing to euphotic depth is one of the 

in turbid waters. Under such water conditions, the 
aphotic portion is large, compared to the euphotic 
zone, and determines the relative time spent in the dark 
by the algae. In contrast,  nutrients are of secondary 

a more favourable underwater light regime prevails, for 

Energy available for phytoplankton growth is dependent 
on the availability of underwater light, which depends 

and algal circulation patterns.
   Godlewska et al. (2003) reported shifts in phytoplankton 
distribution from hypolimnion into the whole water 

species of cladocerans and copepods and favoured 
development of rotifers. However, in certain cases 

declined and the distribution of remaining individuals 
deepened. The changes in distribution may result from 
trying to maximize foraging while minimising the risk 
of predation (Gliwicz 1986).
   Floods can also have positive impacts on planktonic 

the long-term viability of species in metapopulations, 

competitive ability can be introduced into communities 
and release local communities from competitive 
exclusion, shifts local dynamics and enhance long-term 

introduce new species (Havel et al., 2000), but extreme 

also reduce grazing rate (Miquelis et al., 1998) and food 
selectivity of zooplankton (Vanderploeg, 1994).
   Increased discharge into rivers leads to increased 

in lotic systems and facilitates the recolonization of 
denuded areas of a stream (Brittain and Eikeland, 

regulating the distribution, abundance and coexistence 

reductions in macroinvertebrate density have been 

while moderate disturbance may encourage diversity in 
many systems (Smith and Brown, 2006). In regulated 
river reaches below dams, it was reported that sudden 

drift (Layzer et al., 1989).

which may account for the loss of individuals and species 
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in response to a loss of suitable habitat and changes to 
the food web (Rabeni et al., 2005). In addition, high 

of benthic macroinvertebrate taxa and abundance, 

concentration. Pruitt et al. (2001) reported that total 
suspended solids concentrations greater than 284 
mg/l resulted in biological impairment of invertebrate 
communities, while a concentration of 58 mg/l or less 

and were protective of aquatic invertebrates. Variability 
in tolerance to suspended solids could be explained by 
sediment particle characteristics, water temperature, 

is most severe in the non-turbid, upper main river and 
tributaries, where benthos community is dominated 
by the most sensitive Ephemeroptera, Plecoptera and 
Trichoptera species (Miserendino, 2009).
   Sediment transport and deposition are processes that 
are a natural part of the stream environment and play 
a major role in structuring stream habitats. However, 
streams are vulnerable to increased sedimentation 
brought about by altered land uses in the surrounding 

stream communities. The exacerbation of erosion 
and sedimentation may be particularly striking in the 

Armitage, 1997) where extreme climatic conditions 
can prevail and aquatic systems are increasingly under 

vary depending on the shape, size and density of the 
particles; their potential for microbial colonization; 

water (Hellawell, 1986); and the presence of associated 
factors, such as nutrients (Lemly, 1982). Increased 
levels of sedimentation can bury macroinvertebrates 
and their habitats (Wood et al., 2001; Wood et al., 2005) 
leading to shifts in the structure of the habitat and its 
associated fauna (Ryder, 1989).
   Sedimentation has been shown to induce behavioural 
macroinvertebrate response that actively avoid 

(McClelland and Brusven, 1980; Connolly and 

Pearson, 2007). It is predicted that the upland fauna 
will be more sensitive to sedimentation, because it will 
naturally experience lower exposure to sedimentation 

have been demonstrated in the mesocosm as well as 
in-situ experiments (Connolly and Pearson, 2007). 
Fine sediment deposition can cause shifts in the 
community structure through the loss of sensitive 
species, particularly those requiring coarse substrata 
for attachment or feeding, and through increases in 
the abundance of burrowing animals, such as some 

and collector through ingestion of inorganic when 

(Ryder, 1989). Fine silt deposit trapped by periphyton 

et al., 2004). However, several studies have shown 
that changes in abundance rather than diversity are 
commonly associated with sedimentation (Lenat et al., 
1981, Wagener and LaPerriere, 1985).

in lakes are greatest in shallow water and littoral areas, 
where even small changes in water levels can result 
in the conversion of large areas of a standing-water 
environment in air exposed habitats (Leira and Cantonati, 

have been judged by impacts at the physical level, i.e. 
transparency, sedimentation patterns, erosion; at the 
species level, i.e. target species, and by indicators at the 
ecosystem level, i.e. carrying capacity and biodiversity 

level can alter the lake morphometry and transform 
the characteristics of the sedimentation zone (erosion, 
transportation, accumulation; Håkanson, 1977), thereby 
water-level drawdown enhances sediment erosion 
and has the potential to fundamentally change littoral 
sediment and biogeochemical characteristics (Furey et 

the littoral area available for benthic macroinvertebrate. 
The loss of littoral vegetation due to inundation or the 
establishment of emergent species from seeds during 
low water is always accompanied by changes in 
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invertebrates and amphibians (Eulis et al., 2004).

supposedly very sensitive to water level changes and 
littoral plant communities in shallow lakes located 
in semi-arid to arid regions appear to be particularly 

2006). High water level can facilitate the expansion of 

invertebrates.

structure and dynamics of taxa that cannot withstand 
dry periods and lead to a limiting of their distribution at 
low water levels (Bowers and de Szalay 2004; Leira and 
Cantonati, 2008; Rossa and Bonecker, 2003. Indirect 

substrate composition, periphyton growth, resuspension 
versus sedimentation). Particularly important are those 
habitats with cobbles and macrophytes that provide an 
extensive suitable habitat for periphytic algae, which are 
their major food source, egg-laying and tube building, 
and also provide a refuge from predation (Scheifhacken 

2000).
   Fishes are particularly susceptible to changes in 
environmental conditions. Flow plays a critical role in 

associated with extreme variations in precipitation can 

display a preference for particular types of habitat such 

structure is generally considered to be a good predictor 

communities (Gelwick et al., 2001). Therefore, sudden 
or long-term variations in discharge arising from, for 
example, extended droughts or large storms, can be 
particularly devastating, causing changes in water 
chemistry, stream size, water temperature, streambed 

and Maltchik, 2001). Extreme discharge associated with 
storm events can dramatically alter channel morphology 

dramatically alter living conditions and aquatic habitats 

inhabiting streams (Moyle and Vondracek, 1985; Taylor 
and Warren, 2001).
   Crosa et al. (2009) reported that a large volume 

recorded for juveniles will likely result in long-term 

(Garric et al., 1990) along with damage to the gill 
epithelium (Petz-Glechner et al., 2003). High level of 

whilst prolonged lower levels of suspended solids 
and turbidity can result in chronic weight-loss due to 

Susceptibility to stranding is a function of behavioural 

body size, water temperature, time of year and day, 

temporarily suitable habitats to compensate for periodic 
reductions in quality or availability of habitat (Bunt et 
al., 1999).
   Variables, such as sediment load, pH, dissolved 
oxygen, and various nutrients, frequently change 

populations correlate positively with total dissolved 
nitrogen, nutrient concentration, and food resources 
in the water. Gelwick et al. (2001) found positive 
correlations between common measures of assemblage 
structure (diversity and abundance) and dissolved 
oxygen and salinity, whereas the change in chemical 

can introduce new species into assemblages and create 
new habitats (Winemiller et al., 2000), or increase 
availability of shelter and allochthonous food sources, 
and enrich water with nutrients carried from adjacent 

the aquatic biota by increasing water depth, reducing the 
availability of food resources, especially mobile ones. 
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relations, particularly predation and competition. The 

are associated with the reproductive success of many of 

as provide increased shelter resulting in reduced prey 
availability (Luz-Agostinho et al., 2008).

Drought and freshwater biota

relatively few studies of stream faunal dynamics after 

connectivity, droughts disrupt hydrological connectivity. 
With the onset of drought, falling water levels reduce 
the habitat availability for most aquatic biota, exposing 
marginal areas (Stanley et al., 1997), breaking surface 
water contact between the stream and its riparian zone, 

Changing water levels are another stressor on lake 

lakes are dominant forces controlling the functioning 
of lacustrine ecosystems (Wilcox and Meeker, 1992; 

physical processes (e.g. the geomorphologic processes 
of erosion and sedimentation) (Leira and Cantonati, 
2008). With falling water levels, lentic habitats may 
increase in extent and new types of habitats may be 
created, that favour some species. As drying proceeds, 

associated with changes in phenomena such as 

competition, and the nature of food resources. The 
direct and indirect impacts of drought can greatly 
reduce population densities, species richness and alter 
life-history schedules, species composition, patterns 
of abundance, type and strength of biotic interactions 
(e.g. predation and competition), food resources, 
trophic structure and ecosystem processes. Resh (1992) 
found that a severe drought eliminated a population 

Gumaga nigricula. Following water 

become trapped and concentrated in lingering pools 
(Boulton et al., 1992; Matthews 1998; Matthews and 
Marsh-Matthews, 2003). Stream connectivity becomes 

downstream longitudinal links, and the weakening of 
lateral links between the stream channel and riparian 

the surface, hyporheic zone and groundwater.

macroalgae, macrophytes and riparian plants (Holmes, 
1999; Matthews, 1998; Peterson, 1996; Yount and 

stretches of rivers turning into isolated pools, where 
biota become concentrated with very high densities 
of invertebrates (Boulton and Lake, 1992; Miller and 

Matthews, 1998; Matthews and Marsh-Matthews, 

assemblages of biota and with time, such pools can 
diverge from each other in their community structure 

and, ultimately, lead to periods of high algal biomass; in 
one case leading to the formation of a potentially toxic 

to transport organic matter decreases and cause an 

the emergence of isolated pools, the abrupt change in 
physicochemical conditions impose a threshold on the 

and sediments are accumulated in pools, and reduce 
physical reaeration causing a decrease in dissolved 
oxygen concentrations and an increase in nutrient 
concentrations (Caruso, 2002; Stanley et al., 1997; 
Towns, 1985).
   At the onset of drought, tolerant species can grow 

cessation, although this density peak dropped rapidly in 

and Lake, 1992; Towns, 1985). The most probable 

and Fausch, 2000; Stanley et al., 1997) and toxicity of 
certain leachates from leaf decomposition (Boulton and 
Lake, 1990, 1992; Chergui et al., 1997; Towns, 1985, 
1991). As streams dry and the surface water shrinks 
to unshaded pools, the build-up of nutrients, high 
temperatures and solar radiation can precipitate blooms 
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Winder et al., 2012). The algae may create large diel 
changes in oxygen concentration (Matthews, 1998) and 
with rising water temperatures, such pools may become 

Matthews, 1998). Simultaneously, deoxygenation may 
occur in pools too, threatening biota (Golladay et al. 
2002; Labbe and Fausch, 2000; Stanley et al., 1997).
   Low discharge conditions during drought can limit 
habitat resources and mobility (Lohr and Fausch, 

composition, diversity, size structure of populations, 

small areas and usually at considerably higher densities, 

(1989) considered that such biotic interactions contribute 
relatively little to community structure in rivers. 

reduction of habitat area or volume, biotic interactions 
could become temporarily important (Cowx et al., 
1984; Matthews, 1988). Fish population structure can 
also be changed by drought (Resh et al., 2013), reducing 

al., 1988). Pires et al. (1999) note that some species are 
well adapted to natural droughts, however major native 
species are considered to be more sensitive to stream 
fragmentation and hydrological alteration (Parkin et al., 
2014). In addition, habitat degradation and, possibly, 
the introduction of exotic species contribute to marked 
variability in species composition.
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